Source code for xrd_tools.analyse_measurements

from dataclasses import dataclass, field

import matplotlib.pyplot as plt
import pandas as pd

from .measurement_manager import MeasurementManager
from .measurement import Measurement

ANALYSE_COLS = {
    "measurement_id": "measurement ID",
    "sample": "sample",
}


[docs]@dataclass class AnalyseMeasurements: """Perform operations and compare multiple measurements. Args: measurements (list[Measurement]) : Measurement objects for measurements of interest. _cols : Dictionary with strings to assign data series internally. """ measurements: list[Measurement] _cols: dict[str, str] = field(default_factory=lambda: ANALYSE_COLS) @property def measurement_ids(self) -> list[str]: """Returns list of strings with measurement IDs.""" return [m.meta.measurement_id for m in self.measurements] def _id_to_index(self, data: pd.DataFrame, drop=False) -> pd.DataFrame: """Adds measurement IDs as index to a data frame.""" pd_obj = data.copy() pd_obj[self._cols["measurement_id"]] = [ m.meta.measurement_id for m in self.measurements ] pd_obj = pd_obj.reset_index(drop=drop).set_index(self._cols["measurement_id"]) return pd_obj def _sample_to_multiindex(self, data: pd.DataFrame) -> pd.DataFrame: """Adds sample and measurement ID as multiindex to data frame.""" pd_obj = data.copy() if not self._cols["sample"] in pd_obj.columns: pd_obj[self._cols["sample"]] = self.samples return pd_obj.reset_index().set_index( [self._cols["sample"], self._cols["measurement_id"]] ) @property def samples(self) -> pd.Series: """Returns samples""" samples = pd.Series([m.meta.sample for m in self.measurements]) samples.name = self._cols["sample"] return self._id_to_index(samples.to_frame(), drop=True)
[docs] @classmethod def from_ids( cls, ids: list[str], m_manager: MeasurementManager = MeasurementManager() ): """Alternative constructor to initalise instance by list of measurements IDs. Attributes ---------- ids: List of strings with measurements IDs. m_manager: MeasurementManager initiated with measurements directory of interest. """ return cls([m_manager.get_measurement(i) for i in ids])
[docs] def sample_to_df(self, df: pd.DataFrame, col_name="sample") -> pd.DataFrame: """Inserts column with sample IDs into provided Pandas DataFrame. Attributes ---------- df: Pandas DataFrame containing rows for each measurement. col_name: Column name used for the added column. """ df = df.copy() df[col_name] = [m.meta.sample for m in self.measurements] return df
[docs] def multiplot(self, norm: bool = True): """Compare measurements for provided sample IDs in a multiplot. Attributes ---------- norm: Flag to indicate if normalised data are plotted, which is the recommended setting since the y-axis are shared between the individual subplots. """ n = len(self.measurements) fig_kwargs = { "sharex": True, "sharey": True, "tight_layout": True, "figsize": (20 / 2.54, n * 4 / 2.54), "num": "XRD measurement comparison", } fig, axs = plt.subplots(n, 1, **fig_kwargs) for m, ax in zip(self.measurements, axs): data = m.data_norm m._data_to_plot(ax, norm=norm) ax.text( 0.99, 0.85, f"{m.meta.measurement_id} | {m.meta.sample}", horizontalalignment="right", verticalalignment="center", transform=ax.transAxes, ) axs[-1].set_xlabel(m.data_norm.index.name) fig.align_ylabels() plt.show()